Structure-Activity Relationships of Phomactin Derivatives as Platelet Activating Factor Antagonists

Michihiro Sugano, ${ }^{\dagger}$ Aiya Sato,*,† Kazuko Saito, ${ }^{\dagger}$ Sachiko Takaishi, ${ }^{\ddagger}$ Y oichi Matsushita, ${ }^{\ddagger}$ and Yasuteru lijima ${ }^{\ddagger}$ Biomedical Research Laboratories, and Pharmacology and Molecular Biology Research Laboratories, Sankyo Co. Ltd., 2-58, 1-chome, Hiromachi, Shinagawa-ku, Tokyo 140, J apan

Received September 23, 1996^{*}
Phomactins, natural products isolated from the culture broth of marine fungus Phoma sp., were found to be active as PAF antagonists. This unique carbon skeleton led us to investigate the structure-activity relationship demonstrating that the lipophilicity at C-(7-8), acetoxy, (methoxycarbonyl)oxy, and 3-isoxazolyloxy substitution at C-20, and $2-\beta-\mathrm{OH}$ configuration at $\mathrm{C}-2$ are all required for the enhancement of inhibitor activity.

Platelet activating factor (PAF) is a naturally occurring ether phospholipid [1-O-alkyl-2(R)-acetylglyceryl-3-phosphorylcholine] that is a mediator of anaphylaxis released by a number of stimulated cells, such as basophils, neutrophils, platelets, and macrophages. PAF also causes platelet aggregation, chemotaxis, and degranulation of polymorphonudear leukocytes, smooth muscle contraction, vascular permeability, and hypotension. Studies have further shown that PAF may be involved in many inflammatory, respiratory, and cardiovascular diseases. ${ }^{1}$ Intensive efforts to find drugs which block the effects of PAF have resulted in the discovery of a number of specific PAF antagonists, some of which are being tested for their clinical effectiveness. ${ }^{2}$

During the screening of novel PAF antagonists from natural sources, we systematically screened lipophilic extracts of marine fungal isolates for inhibition of PAF induced platelet aggregation and binding of PAF to its receptors and found that a marine fungus Phoma sp. produced novel PAF antagonists, phomactins. ${ }^{3}$ They characteristically bear a unique bicyclo[9.3.1]pentadecane carbon skeleton. This led us to prepare derivatives to examine how each moiety contributes in binding the substrate to the PAF receptor.

As phomactin D (1) was identified as the most potent PAF antagonist in the phomactin series (inhibition of platelet aggregation $\mathrm{IC}_{50} 0.80 \mu \mathrm{M}$, inhibition of binding $\mathrm{IC}_{50} 0.12 \mu \mathrm{M}$), ${ }^{3 \mathrm{bb}}$ it was initiated as the lead compound and was dissected into three key fragments shown in Figure 1. Fragment A concerns the effect of addition at C-(7-8). Fragments B and C relate to the functional effect at C-20 and the configuration effect at C-2-O respectively. In this paper we describe the structureactivity relationship by virtue of modification in fragments A, B, and C.

Chemistry

On the basis of the structure of phomactin $D(\mathbf{1})$, a series of analogues was prepared from a common intermediate 3, prepared by DIBALH reduction of Sch 47918 (2) (phomactin C) (yield 56\%). ${ }^{3 b}$ Efforts to afford 3 in higher yield by trying several reducing agents (namely K-, L-Selectride, LAH, LiBHEt ${ }_{3}, \mathrm{NaBH}_{4}$) were all unsuccessful and generated a 1,2-reduced product at C-2 only. Only DIBALH was chemoselective in

[^0]
phomactin D (1)

Sch 47918 (phomactin C) (2)

Figure 1. Structure of 1 shown in boxes with fragments of the molecule subjected to SAR investigation.
affording 3 through 1,4-reduction and therefore was the reagent of choice (Scheme 1).

Fragment A. MCPBA oxidation of $\mathbf{1}$ and $\mathbf{3}$ gave the respective epoxides $\mathbf{4}$ and 5, whereas oxidation of $\mathbf{1}$ and 3 with OsO_{4} in the presence of N -methylmorpholine N -oxide provided 6 and 7, respectively. In both reactions a single diastereomer was obtained, suggesting that oxidation occurred at the less hindered side of the double bond. In NOE experiments of $\mathbf{1}$ and 3, irradiation of $\mathrm{H}-8 \mathrm{Me}$ resulted in enhancement of $\mathrm{H}-15$ and $\mathrm{H}-20$, whereas irradiation of $\mathrm{H}-7$ resulted in enhancement of $\mathrm{H}-12$. These results exemplified that the β-side of the $\mathrm{C}-(7-8)$ double bond is sterically less hindered than its α-side, thus the MCPBA and OsO_{4} presumably attacks the double bond from the less hindered side. Hence the stereochemistry at C-7 and C-8 of 4, 5, 6, and 7 was supposed as being 7 S and 8 S , respectively.

Fragment B. To clarify the substitution effects in the portion defined by fragment $\mathrm{B}, \mathrm{C}-20-\mathrm{O}$ derivatives were prepared. While 8 was prepared by condensation of $\mathbf{3}$ and acetic anhydride in pyridine, $\mathbf{9}$ and $\mathbf{1 0}$ were prepared by the condensation of $\mathbf{3}$ and n-propionyl chloride, phenyl chloroformate, respectively. Treatment of $\mathbf{1 0}$ with dimethylamine at $-10{ }^{\circ} \mathrm{C}$ gave 12. In a similar manner treatment of $\mathbf{1 0}$ with MeOH under basic conditions afforded methyl carbonate 11.

Scheme 1

Attempted condensation of $\mathbf{3}$ and 3 -hydroxyisoxazole under Mitsunobu conditions was unyielding and resulted in recovery of the starting materials due to the strong hydrogen bond between $\mathrm{C}-20-\mathrm{OH}$ and $\mathrm{C}-2$-carbonyl. After unsuccessful attempts we found that the condensation of diol derivative 14 with 3-hydroxyisoxazole under the same condition gave isoxazole derivative 19. Subsequent oxidation with PDC in the presence of 4A molecular sieves furnished the desired 2-keto derivative 13.

Fragment C. Reduction of all ketone derivatives 3, 8, 9, and $\mathbf{1 2}$ with NaBH_{4} proceeded efficiently with delivery of the hydride onto the α-face to give the corresponding $2-\beta$-OH derivatives $14,15,16$, and 18 . The proton NMR revealed a coupling constant of $2.3-2.5 \mathrm{~Hz}$ between $\mathrm{H}-2$ and $\mathrm{H}-3$, confirming the β-orientation of the C-2 hydroxy. This selectivity is due to the steric hindrance at $\mathrm{C}-4 \mathrm{Me}$ and chelation between $\mathrm{C}-20-\mathrm{O}$ and the boron atom.

Compound $\mathbf{1 7}$ was prepared by acylation of $\mathbf{1 4}$ with phenyl chloroformate followed by treatment with MeOH under basic conditions. Formation of 19 is explained in fragment B.

Results and Discussion

In this study a radioreceptor binding assay using rabbit platelets as the receptor source and $\left[{ }^{3} \mathrm{H}\right]$ PAF as a ligand was employed to evaluate new compounds as potential PAF antagonists. L-652731 (Merck) was prepared as the reference compound. ${ }^{4}$
We have recently reported phomactin E (20) and F (21) as PAF antagonists. ${ }^{5}$ Although 21 differs structurally to $\mathbf{2 0}$ only by the functionality present in fragment A, the former is less active than the latter (inhibition of binding phomactin E (20) $\mathrm{IC}_{50} 5.3 \mu \mathrm{M}$, phomactin F (21) $\mathrm{IC}_{50} 35.9 \mu \mathrm{M}$).

phomactin E(20)

phomactin F (21)

In order to determine whether the hydrophilic function in this fragment would have a negative effect on binding to the receptor, hydrophilic functions were introduced into phomactin D (1) and 3. Inspection of the activities of compounds listed in Table 1 reveals that for a decrease in lipophilicity at C-7-8 there is a corresponding decrease in activity. These results suggest that a hydrophobicity in the vicinity of fragment A is essential to the binding.

Table 1. SAR of Fragment A

compd	$\mathrm{R}_{1}=\mathrm{R}_{2}$	R_{3}	$\mathrm{IC}_{50}(\mu \mathrm{M})$
$\mathbf{4}$	$-\mathrm{O}-$	CHO_{2}	17.0
$\mathbf{5}$	$-\mathrm{O}-$	$\mathrm{CH}_{2} \mathrm{OH}$	30.0
$\mathbf{6}$	OH	$\mathrm{CH}_{2} \mathrm{OH}$	>280
$\mathbf{7}$	OH	$\mathrm{CH}_{2} \mathrm{OH}$	>280
phomactin D (1)			0.12
$\mathbf{3}$			1.3
$\mathrm{~L}-652731$			0.024

Table 2. SAR of Fragment B

compd	R	$\mathrm{IC}_{50}(\mu \mathrm{M})$
3	H	1.3
8	$\begin{gathered} \mathrm{O} \\ -\mathrm{C}-\mathrm{CH}_{3} \end{gathered}$	0.41
9	$\begin{aligned} & \mathrm{O} \\ & -\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \end{aligned}$	1.0
10	$\stackrel{\mathrm{O}}{-\mathrm{CH}-\mathrm{OPh}}$	0.55
11	$\stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{OCH}_{3}$	0.026
12	$\begin{gathered} \mathrm{O} \\ -\mathrm{C}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \end{gathered}$	0.18
13	$\xrightarrow[+N]{N-\mathrm{O}}$	0.05
L-652731		0.024

The derivatives acetoxy (8), n-propionyloxy (9), (dimethylcarbamoyl)oxy (12), (methoxycarbonyl)oxy (11), and isoxazolyloxy (13) (Table 2) were found to be more potent than the parent compound (3). Study of the SAR of PAF analogues shows that substitution at the C-2 position by acetoxy, ${ }^{6}$ n-propionyloxy, ${ }^{6}$ (dimethylcarbamoyl) oxy, ${ }^{7}$ (methyl carbonyl)oxy, ${ }^{8}$ and 3-isoxazolyloxy ${ }^{9}$ have a strong affinity to the PAF receptor, while lysoPAF (2-OH-PAF) ${ }^{6}$ has no affinity. These results indicate that aforementioned functions in fragment B facilitate the binding.

The inhibitory activities of derivatives with the $2-\beta$ OH configuration in fragment C were $1.0-8.1$ times higher than those of the corresponding 2 -keto deriva-

Notes
Table 3. SAR of Fragment C

compd.	R	$\mathrm{IC}_{50}(\mu \mathrm{M})$
14	H	0.74
15		0.08
16		0.34
17		0.013
18		0.18
19		0.031
L-652731		0.024

tives. These results reveal that the $2-\beta-\mathrm{OH}$ configuration is preferable in binding the substrate to the PAF receptor (Table 3).

In conclusion, the lipophilicity at C-(7-8), acetoxy, (methoxycarbonyl)oxy, and 3-isoxazolyloxy at C-20, and the $2-\beta-\mathrm{OH}$ configuration at $\mathrm{C}-2$ all enhance inhibitory activity over that of the lead compound $\mathbf{1}$. The result obtained in this study will provide useful information for the interaction between the PAF receptor and its ligands. Further pharmacological characterizations of these compounds are in progress.

Experimental Section

4. To a solution of $\mathbf{1}(40.7 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added MCPBA ($80-85 \%, 30 \mathrm{mg}$) at $0^{\circ} \mathrm{C}$. After 10 min the reaction mixture was diluted with saturated NaHCO_{3} solution (30.0 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30.0 \mathrm{~mL})$. The dichloromethane layer was concentrated, and the residue was subjected to silica gel column chromatography (hexane-EtOAc, 7:3) to give 4 (16.0 mg): colorless oil; HREIMS [m/ z 334.2137; $\Delta-0.7 \mathrm{mmu}(\mathrm{M})^{+}$]; ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 10.15(1 \mathrm{H}, \mathrm{s}), 3.54(1 \mathrm{H}, \mathrm{s}), 3.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=12.6 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.7,3.2 \mathrm{~Hz}), 2.73(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $5.0,12.6 \mathrm{~Hz}), 2.10-2.20(3 \mathrm{H}, \mathrm{m}), 1.55-1.94(6 \mathrm{H}, \mathrm{m}), 1.44-$ $1.54(2 \mathrm{H}, \mathrm{m}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.26-1.43(2 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{s}), 0.84$ $(3 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz})$.
5. 5 was prepared similarly to the procedure for 4 above. With $\mathbf{3}(50.0 \mathrm{mg})$ as starting material and using MCPBA (80$85 \%, 40.0 \mathrm{mg}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL}), 5(21.3 \mathrm{mg})$ was obtained: colorless oil; HREIMS [m/ z 336.2314; $\Delta+1.3 \mathrm{mmu}$ $(\mathrm{M})^{+} \mathrm{J} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.46(1 \mathrm{H}, \mathrm{s}), 4.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2$, $3.2 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,10.8 \mathrm{~Hz}), 2.93-2.95(1 \mathrm{H}, \mathrm{m})$, $2.86(1 \mathrm{H}, \mathrm{s}), 2.60(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.2,10.8 \mathrm{~Hz}), 2.35-2.43(1 \mathrm{H}$, $\mathrm{m}), 2.16-2.17(2 \mathrm{H}, \mathrm{m}), 1.97-2.15(1 \mathrm{H}, \mathrm{m}), 1.91(1 \mathrm{H}, \mathrm{brt}, \mathrm{J}=$ $14.1 \mathrm{~Hz}), 1.59-1.66(4 \mathrm{H}, \mathrm{m}), 1.47-1.58(2 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{s})$, $1.30-1.40(3 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.65$ (3H, s).
6. To a solution of $\mathbf{1}(57.8 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(3: 1,4 \mathrm{~mL})$ was added N -methylmorpholine N -oxide and OsO_{4} (2% in $\mathrm{H}_{2} \mathrm{O}$,
$500 \mu \mathrm{~L}$) at room temperature. After 1.5 h , the reaction mixture was diluted with saturated NaHCO_{3} solution (20.0 mL) and extracted with EtOAc (30.0 mL) twice. The residue was subjected to silica gel column chromatography (hexaneEtOAc, 2:8) to give 6 (20.6 mg): colorless oil; HREIMS [m/ z 352.2234; $\Delta-1.6 \mathrm{mmu}(\mathrm{M})^{+}$]; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 9.97(1 \mathrm{H}, \mathrm{s})$, $5.30(1 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}$, brd, J = 10.1 Hz$), 3.68(1 \mathrm{H}, \mathrm{s}), 2.92$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}), 2.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}), 2.26-2.45(3 \mathrm{H}$, m), 1.32-2.04 (11H, m), $1.29(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.19(3 \mathrm{H}$, s), $0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz})$.
7. 7 was prepared in a manner similar to the procedure for 6 above. With $3(100.5 \mathrm{mg})$ as starting material and using $\mathrm{OsO}_{4}(2 \%, 500 \mu \mathrm{~L})$ and N -methylmorpholine N -oxide (49.1 mg), 7 (85.0 mg) was obtained: col orless oil; HREIMS [$\mathrm{m} / \mathrm{z} 354.2385$; $\Delta-2.1 \mathrm{mmu}(\mathrm{M})^{+}{ }^{1}{ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 3.88(1 \mathrm{H}, \mathrm{s}), 3.83(1 \mathrm{H}$, d, J = 10.4 Hz), $3.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,2.0 \mathrm{~Hz}$), $3.43(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=13.4,10.7 \mathrm{~Hz}$), $3.08(1 \mathrm{H}$, brd, J $=7.0 \mathrm{~Hz}), 2.56(1 \mathrm{H}$, brd, $\mathrm{J}=10.8 \mathrm{~Hz}), 2.37-2.42(1 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.0,13.4$ $\mathrm{Hz}), 1.86(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.4,14.0 \mathrm{~Hz}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.31-1.71$ ($7 \mathrm{H}, \mathrm{m}$), 1.25-1.29 (1H, m), $1.13(3 \mathrm{H}, \mathrm{s}), 0.78-1.09(2 \mathrm{H}, \mathrm{m})$, $0.73(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), 0.69(3 \mathrm{H}, \mathrm{s})$.
8. To a solution of $\mathbf{3}(80.6 \mathrm{mg})$ in pyridine (2.0 mL) was added $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ at room temperature. After 4 h the solvent was removed by evaporation, and the residue was subjected to silica gel column (hexane-EtOAc, 8:2) to give 8 $(82.4 \mathrm{mg})$: colorless crystal; mp $108{ }^{\circ} \mathrm{C}$; HREIMS [m/ z 362.2479 ; $\Delta+2.2 \mathrm{mmu}(\mathrm{M})^{+}$]; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.28$ (1 H , brd, J $=9.0 \mathrm{~Hz}$), $4.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,3.3 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=11.0,10.9 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{s}), 3.34(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.3,10.9$ $\mathrm{Hz}), 2.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.4,13.9 \mathrm{~Hz}), 2.29-2.38(1 \mathrm{H}, \mathrm{m}), 1.84-$ $2.11(7 \mathrm{H}, \mathrm{m}), 1.93(3 \mathrm{H}, \mathrm{s}), 1.67(3 \mathrm{H}, \mathrm{s}), 1.27-1.62(5 \mathrm{H}, \mathrm{m}), 1.18$ $(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4}\right)$ C, H.
9. To a solution of $\mathbf{3}(185.0 \mathrm{mg})$ in pyridine $(3.0 \mathrm{~mL})$ was added n -propionyl chloride ($100 \mu \mathrm{~L}$) at room temperature. After 15 min the reaction mixture was diluted with EtOAc $(20.0 \mathrm{~mL})$ and saturated CuSO_{4} solution (20.0 mL). The organic layer was concentrated, and the residue was subjected to silica gel column chromatography (hexane-EtOAc, 8:2) to give 9 (139.9 mg): colorless crystal; mp $108^{\circ} \mathrm{C}$; HREIMS [m/ z 376.2635; Δ $+2.1 \mathrm{mmu}(\mathrm{M})^{+}$]; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.28(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=7.3$ $\mathrm{Hz}), 4.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.9,3.2 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.9 \mathrm{~Hz})$, $3.98(1 \mathrm{H}, \mathrm{s}), 3.35(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.2,10.9 \mathrm{~Hz}), 2.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $2.5,13.7 \mathrm{~Hz}), 2.19-2.36(3 \mathrm{H}, \mathrm{m}), 1.85-2.11(7 \mathrm{H}, \mathrm{m}), 1.66(3 \mathrm{H}$, s), $1.27-1.62(5 \mathrm{H}, \mathrm{m}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz})$, $0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.71(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
10. To a solution of $3(233.0 \mathrm{mg})$ and pyridine (2.0 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was added phenyl chloroformate ($220 \mu \mathrm{~L}$) at room temperature. After 30 min the reaction mixture was diluted with EtOAc (20.0 mL) and washed with saturated CuSO_{4} solution (20.0 mL). The organic layer was concentrated, and the residue was subjected to silica gel column (hexane-EtOAc, 9:1) to give $\mathbf{1 0}$ (266.0 mg): colorless crystal; mp $127^{\circ} \mathrm{C}$; HREIMS [m/ z 440.2554; Δ-0.8 mmu (M) ${ }^{+}$]; ${ }^{1 \mathrm{H}}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 7.39(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.6 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}), 7.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=8.6 \mathrm{~Hz})$, $4.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.8,3.4 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.8,10.5$ $\mathrm{Hz}), 3.94(1 \mathrm{H}, \mathrm{s}), 3.41(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=10.5,3.4 \mathrm{~Hz}), 2.40-2.54$ $(2 \mathrm{H}, \mathrm{m}), 1.88-2.12(7 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.31-1.65(5 \mathrm{H}, \mathrm{m})$, $1.19(3 \mathrm{H}, \mathrm{s}), 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.72(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}$.
11. To a solution of $\mathbf{1 0}(46.1 \mathrm{mg})$ in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added one drop of 1 N NaOH at room temperature. After 45 min the mixture was concentrated, and the residue was subjected to silica gel column chromatography (hexaneEtOAc, 8:2) to give $\mathbf{1 1}$ (36.5 mg): colorless oil; HREIMS [m/ z $378.2397 ; \Delta-0.9 \mathrm{mmu}(\mathrm{M})^{+}$]; ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 5.30(1 \mathrm{H}$, brd, J $=8.4 \mathrm{~Hz}$), $4.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,3.4 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=10.7,10.6 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.33(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $3.4,10.6 \mathrm{~Hz}), 2.52(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.3,13.7 \mathrm{~Hz}), 1.85-2.41(8 \mathrm{H}$, m), $1.67(3 \mathrm{H}, \mathrm{s}), 1.23-1.62(5 \mathrm{H}, \mathrm{m}), 1.17(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=6.9 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{s})$.
12. To a solution of $\mathbf{1 0}(122.1 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added dimethylamine ($100 \mu \mathrm{~L}$) at $-10^{\circ} \mathrm{C}$. After 30 min the mixture was concentrated, and the residue was subjected to silica gel column chromatography (hexane-EtOAc, 8:2) to give 12 (107.4 mg): colorless crystal; mp $133^{\circ} \mathrm{C}$; HREIMS [m/z
391.2701; $\Delta-2.1 \mathrm{mmu}(\mathrm{M})^{+}$]; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.28(1 \mathrm{H}$, brd, J $=6.9 \mathrm{~Hz}$), $4.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7,3.0 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{s})$, $3.98(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.7 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.0,10.7 \mathrm{~Hz}), 2.88$ $(3 \mathrm{H}, \mathrm{s}), 2.80(3 \mathrm{H}, \mathrm{s}), 2.51(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.6,13.7 \mathrm{~Hz}), 2.34-2.42$ ($1 \mathrm{H}, \mathrm{m}$), 1.86-2.12 ($7 \mathrm{H}, \mathrm{m}$), $1.67(3 \mathrm{H}, \mathrm{s}), 1.50-1.62(1 \mathrm{H}, \mathrm{m})$, $1.47-1.49(1 \mathrm{H}, \mathrm{m}), 1.28-1.42(3 \mathrm{H}, \mathrm{m}), 1.17(3 \mathrm{H}, \mathrm{s}), 0.90(3 \mathrm{H}$, d, J $=6.9 \mathrm{~Hz}$), $0.70(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
13. To a solution of $\mathbf{1 9}(20.0 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added 4A molecular sieves (500 mg) and PDC (48.2 mg) at room temperature. After 3 h the solution was filtered, and the filtrate was subjected to silica gel column (dichloromethaneacetone, 98:2) to give $\mathbf{1 3}$ (29.1 mg): colorless crystal; mp 143 ${ }^{\circ} \mathrm{C} ;$ HREIMS [m/ z 387.2426; $\Delta+1.7 \mathrm{mmu}(\mathrm{M})^{+}$]; UV; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}), 6.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz})$, $5.38(1 \mathrm{H}, \operatorname{brd}, \mathrm{J}=7.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.1,3.2 \mathrm{~Hz})$, $4.14(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.1 \mathrm{~Hz}), 4.06(1 \mathrm{H}, \mathrm{s}), 3.54(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.2$, $10.1 \mathrm{~Hz}), 2.58(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.6,13.8 \mathrm{~Hz}), 2.44-2.53(1 \mathrm{H}, \mathrm{m})$, $1.93-2.17$ ($7 \mathrm{H}, \mathrm{m}$), $1.70(3 \mathrm{H}, \mathrm{s}), 1.26-1.68$ ($5 \mathrm{H}, \mathrm{m}$), 1.23 (3H, s), $0.94(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.77(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{4}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
14. To a solution of $\mathbf{3}(50.0 \mathrm{mg})$ in dry EtOH $(5.0 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(20.0 \mathrm{mg})$ at room temperature. After 3 h the solvent was removed by evaporation, and the residue was subjected to silica gel to give 14 (45.5 mg): colorless crystal; $\mathrm{mp} 112-113^{\circ} \mathrm{C}$; HREIMS $\left[\mathrm{m} / \mathrm{z} 322.2488 ; \Delta-2.0 \mathrm{mmu}(\mathrm{M})^{+}\right]$; ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 5.13(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=9.0 \mathrm{~Hz}), 4.70(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=4.7,2.5 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,4.1 \mathrm{~Hz}), 3.67(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=11.5,3.7 \mathrm{~Hz}), 2.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.41(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $2.6,13.5 \mathrm{~Hz}$), 2.28 (1 H , ddd, J $=11.7,4.1,3.7 \mathrm{~Hz}$), 1.78-2.12 ($9 \mathrm{H}, \mathrm{m}$), $1.57(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.40-1.45(1 \mathrm{H}, \mathrm{m}), 0.87-$ $1.27(3 \mathrm{H}, \mathrm{m}), 0.84(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
15. 15 was prepared similarly to the procedure for $\mathbf{1 4}$ above. With 8 (62.4 mg) as starting material and using $\mathrm{NaBH}_{4}(30.0$ mg) and EtOH (5.0 mL), $\mathbf{1 5}$ (59.4 mg) was obtained: colorless crystal; mp $117{ }^{\circ} \mathrm{C}$; HREIMS [m/ z 364.2599; $\Delta-1.4 \mathrm{mmu}$ $\left.(\mathrm{M})^{+}\right] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.16(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=9.2 \mathrm{~Hz}), 4.46$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.5,2.5 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.1,3.8 \mathrm{~Hz}), 4.10$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.1,4.2 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.57(1 \mathrm{H}$, ddd, J = 11.4, 4.2, 3.8 Hz), $2.43(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.6,13.6 \mathrm{~Hz}$), $1.73-2.08(9 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.43-$ $1.48(1 \mathrm{H}, \mathrm{m}), 1.03-1.31(3 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.68$ $(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
16. 16 was prepared similarly to the procedure for 14. With $9(90.8 \mathrm{mg})$ as starting material and using $\mathrm{NaBH}_{4}(30.0 \mathrm{mg})$ and EtOH (4.0 mL), 16 (85.8 mg) was obtained: colorless crystal; mp $118{ }^{\circ} \mathrm{C}$; HREIMS [m/ z 378.2773; $\Delta+0.3 \mathrm{mmu}$ $(\mathrm{M})^{+}{ }^{1}{ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.16(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=8.3 \mathrm{~Hz}), 4.46$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.4,2.4 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.1,3.6 \mathrm{~Hz}), 4.09$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.1,4.5 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 2.59(1 \mathrm{H}$, ddd, J = 11.4, 3.6, 4.5 Hz$), 2.40-2.57(1 \mathrm{H}, \mathrm{m}), 2.36(2 \mathrm{H}, \mathrm{q}$, J $=7.6 \mathrm{~Hz}), 1.74-2.06(9 \mathrm{H}, \mathrm{m}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.43-$ $1.48(1 \mathrm{H}, \mathrm{m}), 1.03-1.32(3 \mathrm{H}, \mathrm{m}), 1.14(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 0.86$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.69(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$.
17. To a solution of $\mathbf{4}(130.0 \mathrm{mg})$ and pyridine $(200 \mu \mathrm{~L})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was added phenyl chloroformate ($60.7 \mu \mathrm{~L}$) at room temper ature. After 30 min the reaction mixture was diluted with $\mathrm{EtOAc}(20.0 \mathrm{~mL})$ and washed with CuSO_{4} solution $(20.0 \mathrm{~mL})$. The organic layer was concentrated to give an oil $(137.1 \mathrm{mg})$. To a solution of this oil $(52.0 \mathrm{mg})$ in $\mathrm{MeOH}(3.0$ mL) was added 1 drop of NaOH at room temperature. After 3 h the mixture was concentrated, and the residue was subjected to silica gel column chromatography (hexaneEtOAc, 8:2) to give $\mathbf{1 7}(45.8 \mathrm{mg}$): colorless oil; HREIMS [m/ z 380.2589; $\Delta+2.7 \mathrm{mmu}(\mathrm{M})^{+}$] ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.13$ (1H, brd, J $=9.2 \mathrm{~Hz}), 4.45-4.81(1 \mathrm{H}, \mathrm{m}), 4.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6$, $3.9 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,4.1 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 2.82(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=11.4,4.1,3.9 \mathrm{~Hz}), 2.40(1 \mathrm{H}$, dt , J $=2.7,13.5 \mathrm{~Hz}), 1.71-2.04(9 \mathrm{H}, \mathrm{m}), 1.51(3 \mathrm{H}, \mathrm{s}), 1.51$ (3H, s), 1.40-1.45 (1H , m), 1.01-1.29 (3H , m), $0.83(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=6.7 \mathrm{~Hz}), 0.65(3 \mathrm{H}, \mathrm{s})$.
18. 18 was prepared similarly to the procedure for $\mathbf{1 4}$. With $12(44.0 \mathrm{mg})$ as starting material and using $\mathrm{NaBH}_{4}(20.0 \mathrm{mg})$ and EtOH (4.0 mL), 18 (35.6 mg) was obtained: colorless crystal; mp 126-127 ${ }^{\circ} \mathrm{C}$; HREIMS [m/ z 393.2887; $\Delta+0.8 \mathrm{mmu}$ $(\mathrm{M})^{+}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.15(1 \mathrm{H}$, brd, $\mathrm{J}=9.3 \mathrm{~Hz}), 4.52-$ $4.96(1 \mathrm{H}, \mathrm{m}), 4.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.6,3.3 \mathrm{~Hz}), 4.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$
$=11.6,4.7 \mathrm{~Hz}), 2.95(3 \mathrm{H}, \mathrm{s}), 2.92(4 \mathrm{H}, \mathrm{s}), 2.60(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $11.0,4.7,3.3 \mathrm{~Hz}$), $2.44(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.4,13.8 \mathrm{~Hz}$), $1.76-2.07$ ($9 \mathrm{H}, \mathrm{m}$), $1.54(6 \mathrm{H}, \mathrm{s}), 1.43-1.48(1 \mathrm{H}, \mathrm{m}), 1.04-1.32(3 \mathrm{H}, \mathrm{m})$, $0.86(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.70(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}$, N.
19. To a solution of $\mathbf{1 4}$ (60.0 mg), 3-hydroxyisoxazole (79.5 mg), and triphenylphosphine (244.2 mg) was added DEAE (146 $\mu \mathrm{L}$) at room temperature. After 2.0 h solvent was removed by evaporation, and the residue was subjected to silica gel column (hexane-EtOAc, 7:3) to give 19 (50.0 mg): colorless crystal; mp $178{ }^{\circ} \mathrm{C}$; HRFABMS [m/ z $390.1654 \Delta+0.9 \mathrm{mmu}$ $(\mathrm{M}+\mathrm{H})^{+}$]; ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 8.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}), 6.16$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=9.3 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=4.6,2.5 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,3.6 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=11.0,4.3 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $11.7,4.3,3.6 \mathrm{~Hz}$), $2.48(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.6,13.5 \mathrm{~Hz}), 1.84-2.22$ $(9 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.48-1.53(1 \mathrm{H}, \mathrm{m}), 1.09-$ $1.40(3 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 0.74(3 \mathrm{H}, \mathrm{s})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Supporting Information Available: The data of ${ }^{13} \mathrm{C}$ NMR, IR, and mass spectra (4 pages). Ordering information is given on any current masthead page.

References

(1) Braquet, P.; Touqui, L.; Shen, T. Y.; Vargaftig, B. B. Perspectives in platelet-activating factor research. Pharm. Rev. 1987, 39, 97145.
(2) (a) Casals-Stenzel, J.; Muacevic, G.; Weber, K.-H. Pharmacological Actions of WEB 2086, A new specific antagonist of platelet activating factor. J. Pharmacol. Exp. Ther. 1987, 241, 974-981. (b) Takahara, S.; Mikashima, H.; Muramoto, Y.; Terasawa, M.; Setoguchi, M.; Tahara, T. Pharmacological actions of Y-24180, a new specific antagonist of platelet activating factor (PAF): II. Interactions with PAF and benzodiazepine receptors. Prostaglandins 1990, 40, 571-583. (c) Tsunoda, H.; Sakuma, Y.; Harada, K.; Muramoto, K.; K atayama, S.; Horie, T.; Shimomura, N.; Clark, R.; Miyazawa, S.; Okano, K. Pharmacological activities of a novel thienodiazepine derivative as a platelet-activating factor antagonist. Arznem.-F orsch. 1990, 40, 1201-1205. (d) Sahoo, S. P.; Graham, D. W.; Acton, J. J .; Bitfu, T.; Bugianes, R. L.; Girotra, N. N.; Kuo, C.-H.; Ponpipom, M. M.; Doebber, T. W.; Wu, M. S.; Hwang, S-B.; Lam, M-H.; Madntyre, D. E.; Bach, T. J .; Luell, S.; Meurer, R.; Davis, P.; Alberts, A. W. Synthesis and Biological Activity of MK 287 (L-680,573) a Potent, Specific and Orally Active PAF Receptor Antagonist. Bioorg. Med. Chem. Lett. 1991, 1, 327-332.
(3) (a) Sugano, M.; Sato, A.; Oshima, T.; Furuya, K.; Kuwano, H.; Hata, T.; Hanzawa, H. Phomactin A: A Novel PAF Antagonist from a Marine F ungus Phoma sp. J. Am. Chem. Soc. 1991, 113, 5463-5464. (b) Sugano, M.; Sato, A.; Iijima, Y.; Furuya, K.; Haruyama, H.; Yoda, K.; Hata, T. Phomactins, Novel PAF antagonists from Marine Fungus Phoma sp. J. Org. Chem. 1994, 59, 564-569.
(4) Biftu, T.; Gamble, N. F.; Doebber, T.; Hwang, S.-B.; Shen, T.Y.; Snyder, J.; Springer, J . P.; Stevenson, R. Conformation and Activity of Tetrahydrofuran Lignans and Analogues as Specific Platelet Activating F actor Antagonists. J. Med. Chem. 1986, 29, 1917-1921.
(5) Sugano, M.; Sato, A.; Iijima, Y.; Furuya, K.; Hata, T.; Kuwano, H. Phomactin E, F, and G: New Phomactin-Group PAF Antagonists from a Marine Fungus Phoma sp. J. Antibiot. 1995, 48, 1188-1190.
(6) Demopoulos, C. A.; Pinckard, R. N.; Hanahan, D. J. PlateletActivating Factor; Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phoshorylcholine as the Active Component (A New Class of Lipid Chemical Mediators). J. Biol. Chem. 1979, 254, 93559358.
(7) Hayashi, H.; Kudo, I.; Inoue, K.; Onozaki, K.; Tsushima, S.; Nomura, H.; Nojima, S. Activation of Gunia Pig Peritoneal Macrophages by Platelet Activationg Factor (PAF) and Its Agonists. J. Biochem. 1985, 97, 1737-1745.
(8) Terachi, T.; Toudou, E.; Shimazaki, A.; Oku, T.; Namiki, T. J pn. Kokai Tokkyo Koho J p. 58-13592.
(9) Nakamura, N.; Miyazaki, H.; Ohkawa, N.; Oshima, T.; Koike, H. An Efficient Synthesis of Platelet-Activating Factor (PAF) via 1-O-Alkyl-2-O-(3-isoxazolyl)-sn-glycero-3-phosphocholine, A New PAF Agonist. Utilization of the 3-I soxazolyloxy Group as a Protected Hydroxyl. Tetrahedron Lett. 1990, 31, 699-702.

[^0]: ${ }^{\dagger}$ Biomedical Research Laboratories.
 \# Pharmacology and Molecular Biology Research Laboratories.
 ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, November 15, 1996.

